237/250 musíme myslet na to, že úspěšnosti v jednotlivých celcích nejsou přímo porovnatelné, neboť obtížnost těchto celků pravděpodobně nebyla identická. Výsledky v jednotlivých celcích tedy neporovnáváme mezi sebou, ale pouze vůči celkovému výsledku. Výsledky ukazují, že všechny učitelky vyučující matematiku v 5. ročníku byly schopny dobře připravit své žáky v oblasti slovních úloh. Tam jsou rozdíly ve výsledcích žáků naší školy a průměrného výsledku nejvyšší. Relativně největší problémy má škola v oblasti geometrie. Ta je ve srovnání s národním průměrem podprůměrná ve vyšší úrovni v 5. A, v obou úrovních v 5. B a v základní úrovni v 5. C. Zde by bylo vhodné porovnat obsah testu s prioritami výuky geometrie v naší škole a zvážit, zda něco důležitého nezanedbáváme. Obsah testů pro nás však automaticky nemusí být určující. Můžeme učinit rozhodnutí, že náš odklon od učiva, na které kladou důraz testy, je opodstatněný, a v tom případě nebudeme na naší výuce nic měnit a odchylky budeme připraveni zdůvodnit rodičům i vedení školy. V českém jazyce je opět nejúspěšnější 5. A, zde je však rozdíl mezi jednotlivými třídami menší než v matematice. V 5. A a v 5. C je relativně silnou stránkou výuky českého jazyka sloh a literatura, větná skladba, pravopis a mluvnice. Relativně nejhorší výsledky mají všechny třídy v porozumění textu. Toto zjištění by pro nás mohlo být popudem k posílení důrazu na rozvoj čtenářské gramotnosti. Podle situace ve škole můžeme učinit ze čtenářské gramotnosti školní prioritu a zajistit vzdělávání pro celý pedagogický sbor anebo můžeme pro vybrané vyučující zajistit vzdělávání, koučing nebo mentoring v této oblasti. V angličtině jsou výsledky všech 5. tříd vyrovnané. Třída 5. A dosahuje relativně nejlepších výsledků v gramatice a ve slovní zásobě, naopak 5. B. i 5. C mají v těchto oblastech relativně nejhorší výsledky. Výsledky 5. B napovídají, že žáci si s úlohami z gramatiky a slovní zásoby v testu vůbec nebyli schopni poradit. Zde by bylo jistě užitečné úlohy podrobněji prostudovat a pokusit se identifikovat problémy žáků při jejich řešení. 6.3 Práce s výsledky testů na úrovni žáka 6.3.1 Souvislost mezi testem a školní klasifikací Porovnání školní klasifikace v daných předmětech s výsledky testů u jednotlivých žáků ukáže, zda žáci, kteří dosáhli v testu výborných výsledků, mají dobré známky, a naopak. Pokud výsledky známkám neodpovídají, je třeba se zamyslet nad tím, co je toho příčinou. Je možné, že klademe ve výuce důraz na něco, co testy nezahrnovaly, a to se významně odráží v našem známkování. Je také možné, že při známkování zohledňujeme vstupní předpoklady žáků a výsledná známka odráží spíše než objektivní výsledky individuální pokrok jednotlivých žáků. Rozpory ve výsledcích testů a známkách nemusejí být důvodem pro změnu známkování, ale měli bychom jim rozumět a být schopni je obhájit. 6.3.2 Rozdíly ve znalostech jednotlivých žáků a práce s nimi Pohled na výsledky jednotlivých žáků v matematice ve škole s jednou 5. třídou ukazuje (viz příklad 6.14), že učitelka nemá ve třídě jednoduchou práci, neboť mezi žáky jsou velké rozdíly. Jsou zde tři žáci s výsledkem horším než 40 %, kteří se svým výkonem řadí mezi 7,1 % nejhorších žáků v ČR, a další dva žáci, kteří se svými 44 % tomuto výsledku blíží. Dále zde máme 6 žáků, kteří dosáhli výsledku lepšího než 80 %, čímž se zařadili mezi nejlepší jedno procento žáků 5. ročníku v celé ČR. Učitelka si je těchto rozdílů jistě vědoma, může být však překvapena jejich rozsahem. Vzhledem k tomu, že v tomto případě učitelka získává informaci v 5. ročníku, zbývá jí relativně málo času na to, aby s ní účelně naložila.